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Energy landscape approaches have become increasingly popular for analyzing a wide variety of chemical
physics phenomena. Basic to many of these applications has been the inherent structure mapping, which
divides up the potential energy landscape into basins of attraction surrounding the minima. Here, we probe the
nature of this division by introducing a method to compute the basin area distribution and applying it to some
archetypal supercooled liquids. We find that this probability distribution is a power law over a large number of
decades with the lower-energy minima having larger basins of attraction. Interestingly, the exponent for this
power law is approximately the same as that for a high-dimensional Apollonian packing, providing further
support for the suggestion that there is a strong analogy between the way the energy landscape is divided into
basins, and the way that space is packed in self-similar, space-filling hypersphere packings, such as the
Apollonian packing. These results suggest that the basins of attraction provide a fractal-like tiling of the energy
landscape, and that a scale-free pattern of connections between the minima is a general property of energy
landscapes.
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The potential energy surface, which defines how the po-
tential energy depends on the coordinates of all the atoms in
a system, has a complex, multidimensional landscape �1�. In
recent years, there have been intensive efforts to understand
the behavior of systems, such as proteins, supercooled liq-
uids and clusters, in terms of features of these energy land-
scapes �2�. This research programe has led to important in-
sights into how proteins fold �3� and the origins of the
unusual dynamic properties of supercooled liquids �4,5�.

Many of these applications rely on the inherent structure
mapping introduced by Stillinger and Weber �6� that is illus-
trated in Fig. 1. It divides the energy landscape into basins of
attraction surrounding the minima on the energy landscape,
where a basin is defined as the set of points for which fol-
lowing the steepest-descent paths downhill from those points
leads to the same minimum. The utility of the inherent struc-
ture approach is that it allows the behavior of the complete
landscape to be conceived in terms of the properties of the
individual basins �7�, which are themselves tractable to cal-
culate. Hence, landscape-based descriptions of a system’s
thermodynamics and dynamics can be obtained �1�.

In many of the analyses of energy landscapes, the aim has
been to understand differences in behavior, e.g., proteins that
are good or bad folders �8,9�, or supercooled liquids that
show strong or fragile dynamics �10,11�, in terms of differ-
ences in the energy landscape. However, there has been
much less attention on the more universal organizing prin-
ciples that are common to all such complex landscapes. For
example, it is known that the number of minima scales ex-
ponentially with system size �12�, and the distribution of
minima as a function of energy is a Gaussian �13�, but what
is the nature of the division of the landscape into basins and

the pattern of connectivities between these basins? In par-
ticular, does the inherent structure mapping lead to an equi-
table division of configuration space into basins, or an ineq-
uitable one where a small minority of the basins occupy a
substantial majority of the space?

Clues from recent work on the energy landscapes of small
Lennard-Jones clusters �14,15� perhaps suggest the latter sce-
nario. The network of minima connected by transition states
was found to be scale-free �16�, that is the probability distri-
bution for the degree �the number of connections to a node in
the network� has a power-law tail. Such a feature has been
found for many technological, social, and biochemical net-
works �17,18�, however, unlike these other networks where
the scale-free behavior arises from the dynamics of network
growth �16�, these inherent structure networks are static.
Hence the origin of the scale-free topology remains a puzzle.

One potential answer is that the network structure reflects
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FIG. 1. �Color online� �a� A model two-dimensional energy
landscape and �b� its associated contour plot illustrating the inherent
structure mapping. In �b� the landscape has been divided into basins
of attraction where the basin boundaries are represented by the thick
lines, and the minima and transition states by points.
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an inequitable division of configuration space with the low-
energy, high-degree minima having the largest basins of at-
traction �19,20�, because they are then more likely to have
more transition states along the long basin boundaries. In-
deed, a recently proposed model spatial, scale-free network
based upon Apollonian packings �21� has just such a corre-
lation between area and degree �22,23�. A two-dimensional
example of an Apollonian packing is illustrated in Fig. 2.
Such a packing is generated by the iterative addition of ever-
smaller disks into the interstices of the packing until the
space is filled. Consequently, the packing is fractal and self-
similar �24�. Importantly, the network of contacts between
the disks is scale-free, and the properties of these Apollonian
networks are very similar to the inherent structure networks
�22,23�. Thus, there seems to be a potential analogy between
the hyperspheres in a high-dimensional Apollonian packing
and the basins of attraction on an energy landscape. How-
ever, the starting point for this argument was the energy
landscapes for clusters with less than 15 atoms, and it is not
clear whether the energy landscapes for these very small sys-
tems are representative.

The fractal nature of the Apollonian packings is evident
from the distribution of the radii of the disks or hyperspheres
making up the packing. This distribution is a power law at
small radii with the exponent related to the fractal dimen-
sion, df, where d−1�df �d and d is the dimension of the
space being packed �26�. This feature potentially allows the
analogy between the Apollonian packings and the energy
landscapes to be tested further. The distribution of the vol-

umes of the hyperspheres in an Apollonian packing scales as
V−�1+df/d�, thus leading to the prediction that, because of the
high dimensionality of typical configuration spaces, the dis-
tribution of the hyperareas of the basins of attraction will
follow a power law with exponent −2, if the basins tile con-
figuration space in an Apollonian-like manner.

To test this prediction we need a method that can obtain
this basin area distribution. To achieve this we study a trans-
formed potential energy surface that is commonly used in
global optimization and is particularly associated with the
“basin-hopping” approach �27,28�. This transformation in-
volves assigning the energy at a particular point in configu-
ration space to that obtained after performing a local mini-
mization from that point. It transforms the landscape into a
set of steps, where each corresponds to a basin of attraction
surrounding a minimum on the original potential energy sur-
face. Thus, for the example landscape in Fig. 1, the trans-
formed landscape would consist of nine steps each having
the energy of the corresponding minimum. Importantly, the
probability of sampling a step during a simulation on the
transformed landscape is proportional to its hyperarea
�19,29�.

Specifically, if we assume that the properties of the basins
are uniquely characterized by the energy of their minima, the
probability of being on a step with potential energy in the
range E±dE /2 in the canonical ensemble obeys

pmin
trans�E,T�dE � �min�E�A�E�exp�− E/kT�dE , �1�

where �min�E� is the number of minima with energy
E±dE /2 and A�E� is the average area of the basins of attrac-
tion surrounding minima with energy E. Hence, we can ob-
tain both A�E� �to within a multiplicative constant� and the
basin area distribution from pmin

trans�E ,T� distributions obtained
from simulations, if we first know �min�E�. Methods to ob-
tain �min�E� have already been developed �13,30�, and in-
volve inverting similar probability distributions for the origi-
nal potential energy landscape. Namely, the probability of
being in the basin of attraction of a minimum with potential
energy in the range E±dE /2 in the canonical ensemble is
given by

pmin�E,T�dE � �min�E�Zvib�E,T�exp�− E/kT�dE , �2�

where Zvib�E ,T� is the vibrational partition function of
minima with energy E, which can be calculated, for example,
using the harmonic approximation with frequencies obtained
by diagonalization of the Hessian matrix of the relevant
minima.

Here, we apply this scheme �31� to three representative
systems that have been much studied in the supercooled liq-
uids community �32–34�, namely a binary Lennard-Jones
mixture with approximate composition A4B and Lennard-
Jones parameters as given in Ref. �35�; a model one-
component glass-forming liquid interacting with the Dzugu-
tov potential �36�; and amorphous silicon modelled by the
Stillinger-Weber potential �37� with a strengthened three-
body term �34�. All three systems have 256 atoms and are
modelled using periodic boundary conditions.

FIG. 2. An Apollonian packing of a circle. Such a space-filling
packing of disks is obtained iteratively, starting from an initial con-
figuration of three mutually touching disks inside the circle. At each
iteration disks are added inside each empty curvilinear triangle,
such that each disk touches all three disks bounding the triangle.
This process is repeated ad infinitum creating a space-filling fractal
packing of the circle. Its fractal dimension is 1.3057 �25�.
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For each system, we ran two sets of simulations. First,
constant-temperature molecular dynamics was performed
and by regularly minimizing configurations generated along
the trajectory we obtained pmin�E ,T� and hence �min�E� �and
a Gaussian fit to it�. We chose temperatures well above the
glass transition where equilibrium sampling of the liquid is
easy to obtain. Second, Metropolis Monte Carlo simulations
were performed on the transformed landscape, from which
pmin

trans�E ,T� and hence A�E� was obtained. As a check of the
sampling, pmin

trans�E ,T� distributions were collected at several
temperatures. The resulting area distributions were in good
agreement, confirming the reliability of the approach.

In Fig. 3�a�, A�E� is depicted for these three systems. In
agreement with our expectation that the deeper, more con-
nected minima should have larger basins of attraction, the
basin areas decrease very rapidly with increasing energy in
an approximately exponential manner. The probability distri-
butions for the hyperareas of the basins of attraction are il-
lustrated in Fig. 3�b�. It is apparent that the distributions
follow an approximate power law over the whole range of
areas sampled, which is between 13 and 18 decades depend-
ing on the system. Closer inspection shows that the distribu-
tions begin to curve slightly downwards for larger areas, but
that for the smaller basins the distributions very closely fol-
low the prediction from the Apollonian analogy for 8 to 9
decades for the binary Lennard-Jones and Dzugutov systems,
and 5 decades for amorphous silicon.

These results have a number of important implications for
the fundamental properties of energy landscapes, and the in-
herent structure mapping in particular. First, they show that
this mapping produces a very heterogeneous division of con-
figuration space with the deeper basins having much larger
basins of attraction. Second, there appears to be a strong
analogy between the way that basins of attraction tile the
energy landscape, and hyperspheres fill space in an Apollo-
nian packing. This similarity is exemplified by the power-law
distribution of the basin areas at small A, which has exactly
the expected exponent over a very wide range of basin areas,
and suggests that the basins divide configuration space in a
fractal-like manner. Of course, the analogy must break down
at some sufficiently small length scale, because the number
of minima on an energy landscape, although large, is neces-
sarily finite, whereas the Apollonian packings require an in-
finite number of hyperspheres to fill space. However, there is
not yet any sign of this breakdown in the energy range that
we have sampled. We should note that this energy range
corresponds to the parts of the PEL sampled by a liquid, and
in future work it would be interesting to try to use enhanced
and biased sampling techniques to sample the basin area dis-
tribution at both higher and lower energies.

Third, if, as for the Apollonian networks, the degree is a
power-law function of the area �23� �or equivalently the hy-
perlength of the basin boundary� the power-law distribution
of basin areas is a signature that the underlying pattern of
connections between the minima is scale-free. Thus, our re-
sults suggest that this scale-free topology is not just specific
to small Lennard-Jones clusters, but a more universal prop-

erty of energy landscapes. Indeed, there is evidence that the
energy landscapes of polypeptides also have a scale-free
character �39�. Fourth, the fractal-like character of the energy
landscape provides a static explanation of the origin of the
scale-free topology of inherent structure networks. However,
this is not the end of the matter, since why the basins provide
a fractal-like tiling of the energy landscape is still a puzzle,
and one which we will explore in future work.

The authors are grateful to the Engineering and Physical
Sciences Research Council �C.P.M� and the Royal Society
�J.P.K.D� for financial support.
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FIG. 3. �Color online� �a� The dependence of the basin area on
the energy of the minima, and �b� the cumulative basin area distri-
butions for the binary Lennard-Jones �BLJ� and Dzugutov �Dz� liq-
uids, and amorphous Si. To aid comparison between these systems,
the basin area and the energy are measured with respect to the
largest basin and the lowest-energy minima that have been sampled,
respectively. Additionally, in �b� the power-law predicted by the
analogy to Apollonian packings has been added for comparison
�38�.
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